Problem

Source: 2018 Thailand October Camp 1.3

Tags: functional equation, algebra, function



Find all function $f:\mathbb{Z}\to\mathbb{Z}$ satisfying $\text{(i)}$ $f(f(m)+n)+2m=f(n)+f(3m)$ for every $m,n\in\mathbb{Z}$, $\text{(ii)}$ there exists a $d\in\mathbb{Z}$ such that $f(d)-f(0)=2$, and $\text{(iii)}$ $f(1)-f(0)$ is even.