2001 Croatia National Olympiad

1st Grade

Problem 1

Find all integers $x$ for which $2x^2-x-36$ is the square of a prime number.

Problem 2

Let $S$ be the center of a square $ABCD$ and $P$ be the midpoint of $AB$. The lines $AC$ and $PD$ meet at $M$, and the lines $BD$ and $PC$ meet at $N$. Prove that the radius of the incircle of the quadrilateral $PMSN$ equals $MP-MS$.

Problem 3

Let $a$ and $b$ be positive numbers. Prove the inequality $$\sqrt[3]{\frac ab}+\sqrt[3]{\frac ba}\le\sqrt[3]{2(a+b)\left(\frac1a+\frac1b\right)}.$$

Problem 4

Find all possible values of $n$ for which a rectangular board $9\times n$ can be partitioned into tiles of the shape:

2nd Grade

Problem 1

Let $z\ne0$ be a complex number such that $z^8=\overline z$. What are the possible values of $z^{2001}$?

Problem 2

The excircle of a triangle $ABC$ corresponding to $A$ touches the side $BC$ at $K$ and the rays $AB$ and $AC$ at $P$ and $Q$, respectively. The lines $OB$ and $OC$ intersect $PQ$ at $M$ and $N$, respectively. Prove that $$\frac{QN}{AB}=\frac{NM}{BC}=\frac{MP}{CA}.$$

Problem 3

Let there be given triples of integers $(r_j,s_j,t_j),~j=1,2,\ldots,N$, such that for each $j$, $r_j,t_j,s_j$ are not all even. Show that one can find integers $a,b,c$ such that $ar_j+bs_j+ct_j$ is odd for at least $\frac{4N}7$ of the indices $j$.

Problem 4

On the coordinate plane is given a polygon $\mathcal P$ with area greater than $1$. Prove that there exist two different points $(x_1,y_1)$ and $(x_2,y_2)$ inside the polygon $\mathcal P$ such that $x_1-x_2$ and $y_1-y_2$ are both integers.

3rd Grade

Problem 1

Let $O$ and $P$ be fixed points on a plane, and let $ABCD$ be any parallelogram with center $O$. Let $M$ and $N$ be the midpoints of $AP$ and $BP$ respectively. Lines $MC$ and $ND$ meet at $Q$. Prove that the point $Q$ lies on the lines $OP$, and show that it is independent of the choice of the parallelogram $ABCD$.

Problem 2

In a triangle $ABC$ with $AC\ne BC$, $M$ is the midpoint of $AB$ and $\angle A=\alpha$, $\angle B=\beta$, $\angle ACM=\varphi$ and $\angle BSM=\Psi$. Prove that $$\frac{\sin\alpha\sin\beta}{\sin(\alpha-\beta)}=\frac{\sin\varphi\sin\Psi}{\sin(\varphi-\Psi)}.$$

Problem 3

Numbers $1,\frac12,\frac13,\ldots,\frac1{2001}$ are written on a blackboard. A student erases two numbers $x,y$ and writes down the number $x+y+xy$ instead. Determine the number that will be written on the board after $2000$ such operations.

Problem 4

Let $S$ be a set of $100$ positive integers less than $200$. Prove that there exists a nonempty subset $T$ of $S$ the product of whose elements is a perfect square.

4th Grade

Problem 1

On the unit circle $k$ with center $O$, points $A$ and $B$ with $AB=1$ are chosen and unit circles $k_1$ and $k_2$ with centers $A$ and $B$ are drawn. A sequence of circles $(l_n)$ is defined as follows: circle $l_1$ is tangent to $k$ internally at $D_1$ and to $k_1,k_2$ externally, and for $n>1$ circle $l_n$ is tangent to $k_1$ and $k_2$ and to $l_{n-1}$ at $D_n$. For each $n$, compute $d_n=OD_n$ and the radius $r_n$ of $l_n$.

Problem 2

A piece of paper in the shape of a square $FBHD$ with side $a$ is given. Points $G,A$ on $FB$ and $E,C$ on $BH$ are marked so that $FG=GA=AB$ and $BE=EC=CH$. The paper is folded along $DG,DA,DC$ and $AC$ so that $G$ overlaps with $B$, and $F$ and $H$ overlap with $E$. Compute the volume of the obtained tetrahedron $ABCD$.

Problem 3

Let $p_1,p_2,p_3,p_4$ be four distinct primes, and let $1=d_1<d_2<\ldots<d_{16}=n$ be the divisors of $n=p_1p_2p_3p_4$. Determine all $n<2001$ with the property that $d_9-d_8=22$.

Problem 4

Suppose that zeros and ones are written in the cells of an $n\times n$ board, in such a way that the four cells in the intersection of any two rows and any two columns contain at least one zero. Prove that the number of ones does not exceed $\frac n2\left(1+\sqrt{4n-3}\right)$.