In a triangle $ABC$ with $AC\ne BC$, $M$ is the midpoint of $AB$ and $\angle A=\alpha$, $\angle B=\beta$, $\angle ACM=\varphi$ and $\angle BSM=\Psi$. Prove that $$\frac{\sin\alpha\sin\beta}{\sin(\alpha-\beta)}=\frac{\sin\varphi\sin\Psi}{\sin(\varphi-\Psi)}.$$