Problem

Source: Croatia MO 2001 3rd Grade P1

Tags: geometry, parallelogram



Let $O$ and $P$ be fixed points on a plane, and let $ABCD$ be any parallelogram with center $O$. Let $M$ and $N$ be the midpoints of $AP$ and $BP$ respectively. Lines $MC$ and $ND$ meet at $Q$. Prove that the point $Q$ lies on the lines $OP$, and show that it is independent of the choice of the parallelogram $ABCD$.