2016 USA Team Selection Test

December 10th, 2015 - Dec

1

Let $S = \{1, \dots, n\}$. Given a bijection $f : S \to S$ an orbit of $f$ is a set of the form $\{x, f(x), f(f(x)), \dots \}$ for some $x \in S$. We denote by $c(f)$ the number of distinct orbits of $f$. For example, if $n=3$ and $f(1)=2$, $f(2)=1$, $f(3)=3$, the two orbits are $\{1,2\}$ and $\{3\}$, hence $c(f)=2$. Given $k$ bijections $f_1$, $\ldots$, $f_k$ from $S$ to itself, prove that \[ c(f_1) + \dots + c(f_k) \le n(k-1) + c(f) \]where $f : S \to S$ is the composed function $f_1 \circ \dots \circ f_k$. Proposed by Maria Monks Gillespie

2

Let $ABC$ be a scalene triangle with circumcircle $\Omega$, and suppose the incircle of $ABC$ touches $BC$ at $D$. The angle bisector of $\angle A$ meets $BC$ and $\Omega$ at $E$ and $F$. The circumcircle of $\triangle DEF$ intersects the $A$-excircle at $S_1$, $S_2$, and $\Omega$ at $T \neq F$. Prove that line $AT$ passes through either $S_1$ or $S_2$. Proposed by Evan Chen

3

Let $p$ be a prime number. Let $\mathbb F_p$ denote the integers modulo $p$, and let $\mathbb F_p[x]$ be the set of polynomials with coefficients in $\mathbb F_p$. Define $\Psi : \mathbb F_p[x] \to \mathbb F_p[x]$ by \[ \Psi\left( \sum_{i=0}^n a_i x^i \right) = \sum_{i=0}^n a_i x^{p^i}. \]Prove that for nonzero polynomials $F,G \in \mathbb F_p[x]$, \[ \Psi(\gcd(F,G)) = \gcd(\Psi(F), \Psi(G)). \]Here, a polynomial $Q$ divides $P$ if there exists $R \in \mathbb F_p[x]$ such that $P(x) - Q(x) R(x)$ is the polynomial with all coefficients $0$ (with all addition and multiplication in the coefficients taken modulo $p$), and the gcd of two polynomials is the highest degree polynomial with leading coefficient $1$ which divides both of them. A non-zero polynomial is a polynomial with not all coefficients $0$. As an example of multiplication, $(x+1)(x+2)(x+3) = x^3+x^2+x+1$ in $\mathbb F_5[x]$. Proposed by Mark Sellke

January 21st, 2016 - Jan

1

Let $\sqrt 3 = 1.b_1b_2b_3 \dots _{(2)}$ be the binary representation of $\sqrt 3$. Prove that for any positive integer $n$, at least one of the digits $b_n$, $b_{n+1}$, $\dots$, $b_{2n}$ equals $1$.

2

Let $n \ge 4$ be an integer. Find all functions $W : \{1, \dots, n\}^2 \to \mathbb R$ such that for every partition $[n] = A \cup B \cup C$ into disjoint sets, \[ \sum_{a \in A} \sum_{b \in B} \sum_{c \in C} W(a,b) W(b,c) = |A| |B| |C|. \]

3

Let $ABC$ be an acute scalene triangle and let $P$ be a point in its interior. Let $A_1$, $B_1$, $C_1$ be projections of $P$ onto triangle sides $BC$, $CA$, $AB$, respectively. Find the locus of points $P$ such that $AA_1$, $BB_1$, $CC_1$ are concurrent and $\angle PAB + \angle PBC + \angle PCA = 90^{\circ}$.