Problem

Source: USA January TST for IMO 2016, Problem 1

Tags: number theory, binary representation, irrational number



Let $\sqrt 3 = 1.b_1b_2b_3 \dots _{(2)}$ be the binary representation of $\sqrt 3$. Prove that for any positive integer $n$, at least one of the digits $b_n$, $b_{n+1}$, $\dots$, $b_{2n}$ equals $1$.