Problem

Source: USA December TST for 57th IMO 2016, Problem 1

Tags: combinatorics, December TST, bijection, orbit, graph theory, group theory, linear algebra



Let $S = \{1, \dots, n\}$. Given a bijection $f : S \to S$ an orbit of $f$ is a set of the form $\{x, f(x), f(f(x)), \dots \}$ for some $x \in S$. We denote by $c(f)$ the number of distinct orbits of $f$. For example, if $n=3$ and $f(1)=2$, $f(2)=1$, $f(3)=3$, the two orbits are $\{1,2\}$ and $\{3\}$, hence $c(f)=2$. Given $k$ bijections $f_1$, $\ldots$, $f_k$ from $S$ to itself, prove that \[ c(f_1) + \dots + c(f_k) \le n(k-1) + c(f) \]where $f : S \to S$ is the composed function $f_1 \circ \dots \circ f_k$. Proposed by Maria Monks Gillespie