2012 CHKMO

1

Let $a_1,a_2,...,a_m(m\geq 1)$ be all the positive divisors of $n$. If there exist $m$ integers $b_1,b_2,...b_m$ such that $n=\sum_{i=1}^m (-1)^{b_i} a_i$, then $n$ is a $\textit{good}$ number. Prove that there exist a good number with exactly $2013$ distinct prime factors.

2

Among the coordinates $(x,y)$ $(1\leq x,y\leq 101)$, choose some points such that there does not exist $4$ points which form a isoceles trapezium with its base parallel to either the $x$ or $y$ axis(including rectangles). Find the maximum number of coordinate points that can be chosen.

3

For any positive integer $n$ and real numbers $a_i>0$ ($i=1,2,...,n$), prove that \[\sum_{k=1}^n \frac{k}{a_1^{-1}+a_2^{-1}+...+a_k^{-1}}\leq 2\sum_{k=1}^n a_k.\] Discuss if the "$2$" at the right hand side of the inequality can or cannot be replaced by a smaller real number.

4

In $\triangle ABC$, $AB>AC$. In the circumcircle $(O)$ of $\triangle ABC$, $M$ is the midpoint of arc $BAC$. The incircle $(I)$ of $\triangle ABC$ touches $BC$ at $D$, the line through $D$ parallel to $AI$ intersects $(I)$ again at $P$. Prove that $AP$ and $IM$ intersect at a point on $(O)$.