Problem

Source: CHKMO 2012 Q3

Tags: inequalities



For any positive integer $n$ and real numbers $a_i>0$ ($i=1,2,...,n$), prove that \[\sum_{k=1}^n \frac{k}{a_1^{-1}+a_2^{-1}+...+a_k^{-1}}\leq 2\sum_{k=1}^n a_k.\] Discuss if the "$2$" at the right hand side of the inequality can or cannot be replaced by a smaller real number.