Problem

Source: CHKMO 2012

Tags: geometry, circumcircle, geometric transformation, reflection, incenter, geometry proposed



In $\triangle ABC$, $AB>AC$. In the circumcircle $(O)$ of $\triangle ABC$, $M$ is the midpoint of arc $BAC$. The incircle $(I)$ of $\triangle ABC$ touches $BC$ at $D$, the line through $D$ parallel to $AI$ intersects $(I)$ again at $P$. Prove that $AP$ and $IM$ intersect at a point on $(O)$.