2008 239 Open Mathematical Olympiad

Grade 10-11

1

Composite numbers $a$ and $b$ have equal number of divisors. All proper divisors of $a$ were written in ascending order and all proper divisors of $b$ were written under them in ascending order, then the numbers that are below each other were added together. It turned out that the resulting numbers formed a set of all proper divisors of a certain number. What are the smallest values that $a$ and $b$ take?

2

A circumscribed quadrilateral $ABCD$ is given. $E$ and $F$ are the intersection points of opposite sides of the $ABCD$. It turned out that the radii of the inscribed circles of the triangles $AEF$ and $CEF$ are equal. Prove that $AC \bot BD$.

3

Prove that you can arrange arrows on the edges of a convex polyhedron such that each vertex contains at most three arrows.

4

For what natural number $n> 100$ can $n$ pairwise distinct numbers be arranged on a circle such that each number is either greater than $100$ numbers following it clockwise or less than all of them? and would any property be violated when deleting any of those numbers?

5

In the triangle $ABC$, $\angle{B} = 120^{\circ}$, point $M$ is the midpoint of side $AC$. On the sides $AB$ and $BC$, the points $K$ and $L$ are chosen such that $KL \parallel AC$. Prove that $MK + ML \geq MA$.

6

Given a polynomial $P(x,y)$ with real coefficients, suppose that some real function $f:\mathbb R \to \mathbb R$ satisfies $$P(x,y) = f(x+y)-f(x)-f(y)$$for all $x,y\in\mathbb R$. Show that some polynomial $q$ satisfies $$P(x,y) = q(x+y)-q(x)-q(y)$$

7

Find all natural numbers $n, k$ such that $$ 2^n – 5^k = 7. $$

8

The natural numbers $x_1, x_2, \ldots , x_n$ are such that all their $2^n$ partial sums are distinct. Prove that: $$ {x_1}^2 + {x_2}^2 + \ldots + {x_n}^2 \geq \frac{4^n – 1}{3}. $$

Grade 8-9

1

An odd natural number $k$ is given. Consider a composite number $n$. We define $d(n)$ the set of proper divisors of number $n$. If for some number $m$, $d(m)$ is equal to $d(n) \cup \{ k \}$, we call $n$ a good number. prove that there exist only finitely many good numbers. (A proper divisor of a number is any divisor other than one and the number itself.)

2

For all positive numbers $a, b, c$ satisfying $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 1$, prove that: $$ \frac{a}{a+bc} + \frac{b}{b+ca} + \frac{c}{c+ab} \geq \frac{3}{4} .$$

3

A connected graph has $100$ vertices, the degrees of all the vertices do not exceed $4$ and no two vertices of degree $4$ are adjacent. Prove that it is possible to remove several edges that have no common vertices from this graph such that there would be no triangles in the resulting graph.

4

Point $P$ is located inside an acute-angled triangle $ABC$. $A_1$, $B_1$, $C_1$ are points symmetric to $P$ with respect to the sides of triangle $ABC$. It turned out that the hexagon $AB_1CA_1BC_1$ is inscribed. Prove that $P$ is the Torricelli point of triangle $ABC$.

5

You are given a checkered square, the side of which is $n – 1$ long and contains $n \geq 10$ nodes. A non-return path is a path along edges, the intersection of which with any horizontal or vertical line is a segment, point or empty set, and which does not pass along any edge more than once. What is the smallest number of non-return paths that can cover all the edges? (An edge is a unit segment between adjacent nodes.)

6

$AB$ is the chord of the circle $S$. Circles $S_1$ and $S_2$ touch the circle $S$ at points $P$ and $Q$, respectively, and the segment $AB$ at point $K$. It turned out that $\angle{PBA}=\angle{QBA}$. Prove that $AB$ is the diameter of the circle $S$.

Same as grade 10-11, 4 - 7

Same as grade 10-11, 7 - 8

Thanks should go to Alireza Danaie for translation.