Problem

Source: 239 2008 S6

Tags: polynomial, algebra, function



Given a polynomial $P(x,y)$ with real coefficients, suppose that some real function $f:\mathbb R \to \mathbb R$ satisfies $$P(x,y) = f(x+y)-f(x)-f(y)$$for all $x,y\in\mathbb R$. Show that some polynomial $q$ satisfies $$P(x,y) = q(x+y)-q(x)-q(y)$$