You are given a checkered square, the side of which is $n – 1$ long and contains $n \geq 10$ nodes. A non-return path is a path along edges, the intersection of which with any horizontal or vertical line is a segment, point or empty set, and which does not pass along any edge more than once. What is the smallest number of non-return paths that can cover all the edges? (An edge is a unit segment between adjacent nodes.)