Let $ABC$ be an isosceles triangle with $AB = AC$. Let $AD$ be the diameter of the circumcircle of $ABC$ and let $P$ be a point on the smaller arc $BD$. The line $DP$ intersects the rays $AB$ and $AC$ at points $M$ and $N$, respectively. The line $AD$ intersects the lines $BP$ and $CP$ at points $Q$ and $R$, respectively. Prove that the midpoint of $MN$ lies on the circumcircle of $PQR$
2019 SAFEST Olympiad
Day 1
Define the sequence $a_0,a_1,a_2,\hdots$ by $a_n=2^n+2^{\lfloor n/2\rfloor}$. Prove that there are infinitely many terms of the sequence which can be expressed as a sum of (two or more) distinct terms of the sequence, as well as infinitely many of those which cannot be expressed in such a way.
Let $m,n\geq 2$ be integers. Let $f(x_1,\dots, x_n)$ be a polynomial with real coefficients such that $$f(x_1,\dots, x_n)=\left\lfloor \frac{x_1+\dots + x_n}{m} \right\rfloor\text{ for every } x_1,\dots, x_n\in \{0,1,\dots, m-1\}.$$Prove that the total degree of $f$ is at least $n$.
Day 2
Let $a_1, a_2, . . . , a_{2019}$ be any positive real numbers such that $\frac{1}{a_1 + 2019}+\frac{1}{a_2 + 2019}+ ... +\frac{1}{a_{2019} + 2019}=\frac{1}{2019}$. Find the minimum value of $a_1a_2... a_{2019}$ and determine for which values of $a_1, a_2, . . . , a_{2019}$ this minimum occurs
There are $25$ IMO participants attending a party. Every two of them speak to each other in some language, and they use only one language even if they both know some other language as well. Among every three participants there is a person who uses the same language to speak to the other two (in that group of three). Prove that there is an IMO participant who speaks the same language to at least $10$ other participants
Let $ABC$ be a triangle with circumcircle $\Omega$ and incentre $I$. A line $\ell$ intersects the lines $AI$, $BI$, and $CI$ at points $D$, $E$, and $F$, respectively, distinct from the points $A$, $B$, $C$, and $I$. The perpendicular bisectors $x$, $y$, and $z$ of the segments $AD$, $BE$, and $CF$, respectively determine a triangle $\Theta$. Show that the circumcircle of the triangle $\Theta$ is tangent to $\Omega$.