Problem

Source: The 1st SAFEST Olympiad 2019 p1

Tags: geometry, midpoint, circumcircle, isosceles



Let $ABC$ be an isosceles triangle with $AB = AC$. Let $AD$ be the diameter of the circumcircle of $ABC$ and let $P$ be a point on the smaller arc $BD$. The line $DP$ intersects the rays $AB$ and $AC$ at points $M$ and $N$, respectively. The line $AD$ intersects the lines $BP$ and $CP$ at points $Q$ and $R$, respectively. Prove that the midpoint of $MN$ lies on the circumcircle of $PQR$