1
Let the altitude from $A$ and $B$ of triangle $ABC$ meet the circumcircle of $ABC$ again at $D$ and $E$ respectively. Let $DE$ meet $AC$ and $BC$ at $P$ and $Q$ respectively. Show that $ABQP$ is cyclic
Let the altitude from $A$ and $B$ of triangle $ABC$ meet the circumcircle of $ABC$ again at $D$ and $E$ respectively. Let $DE$ meet $AC$ and $BC$ at $P$ and $Q$ respectively. Show that $ABQP$ is cyclic
Let $abc$ be real numbers satisfying $ab+bc+ca=1$. Show that $\frac{|a-b|}{|1+c^2|}$ + $\frac{|b-c|}{|1+a^2|}$ $>=$ $\frac{|c-a|}{|1+b^2|}$
Show that $$5^{2019} \mid \Sigma^{5^{2019}}_{k=1}3^{gcd (5^{2019},k)}$$
A rectangular grid whose side lengths are integers greater than $1$ is given. Smaller rectangles with area equal to an odd integer and length of each side equal to an integer greater than $1$ are cut out one by one. Finally one single unit is left. Find the least possible area of the initial grid before the cuttings. Ps. Collected here