Let $abc$ be real numbers satisfying $ab+bc+ca=1$. Show that $\frac{|a-b|}{|1+c^2|}$ + $\frac{|b-c|}{|1+a^2|}$ $>=$ $\frac{|c-a|}{|1+b^2|}$
Source: Nigeria mo 3rd round problem 2
Tags: algebra, triangle inequality, inequalities
Let $abc$ be real numbers satisfying $ab+bc+ca=1$. Show that $\frac{|a-b|}{|1+c^2|}$ + $\frac{|b-c|}{|1+a^2|}$ $>=$ $\frac{|c-a|}{|1+b^2|}$