2019 CHKMO

1

Given that $a,b$, and $c$ are positive real numbers such that $ab + bc + ca \geq 1$, prove that \[ \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} \geq \frac{\sqrt{3}}{abc} .\]

2

Find the number of nonnegative integers $k$, $0 \leq k \leq 2188$, and such that $\binom{2188}{k}$ is divisible by 2188.

3

The incircle of $\triangle{ABC}$, with incentre $I$, meets $BC, CA$, and $AB$ at $D,E$, and $F$, respectively. The line $EF$ cuts the lines $BI$, $CI, BC$, and $DI$ at $K,L,M$, and $Q$, respectively. The line through the midpoint of $CL$ and $M$ meets $CK$ at $P$. (a) Determine $\angle{BKC}$. (b) Show that the lines $PQ$ and $CL$ are parallel.

4

Find all integers $n \geq 3$ with the following property: there exist $n$ distinct points on the plane such that each point is the circumcentre of a triangle formed by 3 of the points.