The incircle of $\triangle{ABC}$, with incentre $I$, meets $BC, CA$, and $AB$ at $D,E$, and $F$, respectively. The line $EF$ cuts the lines $BI$, $CI, BC$, and $DI$ at $K,L,M$, and $Q$, respectively. The line through the midpoint of $CL$ and $M$ meets $CK$ at $P$. (a) Determine $\angle{BKC}$. (b) Show that the lines $PQ$ and $CL$ are parallel.
Problem
Source: CHKMO 2018 P3
Tags: geometry, incenter
01.05.2019 17:32
[asy][asy] import graph; size(17.500557172627527cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(10); defaultpen(dps); pen ds=black; real xmin=-8.860535490411433,xmax=8.640021682216094,ymin=-4.551851715943749,ymax=8.845126533447038; pair A=(-1.461003513516025,6.852595272167005), B=(-2.1382840950205244,-0.2995733029363512), C=(8.024804307410092,-0.272968359474491), I=(0.5968442371705093,2.195336715973298), F=(-1.8798175285459484,2.429866319188775), D=(0.6033566270892435,-0.2923962329831843), K=(3.4223196567412906,4.772658902103807), L=(-1.119683834720336,2.7657375948057177), M=(-8.092277176050304,-0.3151596722584186), Q=(0.5933695578523076,3.52266421552634), P=(6.288939985867701,1.630030782934962); draw(circle(I,2.487741473012453),linewidth(2.)); draw(A--B,linewidth(2.)); draw(B--C,linewidth(2.)); draw(C--A,linewidth(2.)); draw(M--K,linewidth(2.)); draw(M--B,linewidth(2.)); draw(B--K,linewidth(2.)); draw(K--C,linewidth(2.)); draw(B--I,linewidth(2.)); draw(C--I,linewidth(2.)); draw(I--L,linewidth(2.)); draw(Q--D,linewidth(2.)); draw(P--Q,linewidth(2.)); draw(circle((4.310824243124892,0.9611841781730541),3.9136657970741062),linewidth(2.)+linetype("4 4")); draw(K--D,linewidth(2.)); draw(M--P,linewidth(2.)); dot(A,linewidth(3.pt)+ds); label("$A$",(-1.347365255955822,7.034724067313149),NE*lsf); dot(B,linewidth(3.pt)+ds); label("$B$",(-2.2223931145871982,-0.9008734092404037),NE*lsf); dot(C,linewidth(3.pt)+ds); label("$C$",(8.006380819069236,-0.8707000348048389),NE*lsf); dot(I,linewidth(3.pt)+ds); label("$I$",(0.7345975800981424,2.5388912764139877),NE*lsf); dot(F,linewidth(3.pt)+ds); label("$F$",(-2.3430866123294574,2.629411399720682),NE*lsf); dot(D,linewidth(3.pt)+ds); label("$D$",(0.2819969635646718,-0.8707000348048389),NE*lsf); dot((2.090992783868283,4.184401259156122),linewidth(3.pt)+ds); label("$E$",(2.062226055262989,4.530333989161267),NE*lsf); dot(K,linewidth(3.pt)+ds); label("$K$",(3.631241525912354,5.163974852308129),NE*lsf); dot(L,linewidth(3.pt)+ds); label("$L$",(-1.1964983837779986,3.232878888431979),NE*lsf); dot(M,linewidth(3.pt)+ds); label("$M$",(-8.287241376135704,-0.840526660369274),NE*lsf); dot(Q,linewidth(3.pt)+ds); label("$Q$",(0.31217033800023647,3.8966931260144055),NE*lsf); dot((3.452560236344878,1.2463846176656133),linewidth(4.pt)+ds); label("$N$",(3.5708947770412243,1.4828231711692184),NE*lsf); dot(P,linewidth(4.pt)+ds); label("$P$",(6.407191973984307,1.8750770388315612),NE*lsf); label("$d$",(2.3337864251830713,3.6854795049654516),NE*lsf); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); [/asy][/asy] (a) We angle chase to show that $\angle{BKC}=90^{\circ}.$ It suffices to prove that $K$ is on the circumcircle of cyclic quadrilateral $DCEI$. Indeed, bearing in mind that $K$ is on the $\angle{B}$ internal bisector and thus equidistant from $F$ and $D$, \[ \angle{KDC} = 180^{\circ} - \angle{BDK} = 180^{\circ} - \angle{BFK} = \angle{AFE} = \angle{AEF} = \angle{KEC} . \]Hence $K$ lies on the circumcircle of points, $C, D, E$. This proves the lemma. (b) Let $N$ be the midpoint of $CL$. It well known that $-1 = (BC; MD)$. Then \[ -1 = (BC ; MD) \overset{I}{=} (KL; MQ) \overset{P}{=} (LC, N, PQ \cap CL) . \]Hence $PQ \parallel CL$ since $N$ is the midpoint of $CL$.
01.05.2019 17:52
$(a)$ Its well known that this is $90^{\circ}$ $(b)$Define $G=MP\cap CI,H=PQ\cap KG$. So $(M,D,B,C)\overset{L}{=} (M,Q,K,L)\overset{G}{=} (P,Q,H,PQ\cap CI)$.Thus it suffices to show that $G$ is the midpoint of $CL$.Maybe I am just dumb but I couldn't find any synthetic for proving this Lol Now I see that this is the definition of $G$ only
16.07.2020 18:58
You know what's coming. I hope synthetic mafia won't send their mobster. Ahh, I don't care. I'm like Ace Rothstein in this Casino. Anyway, I can hide behind the imaginary axis so they won't get me. Let $x,y,z$ be complex numbers lying on unit circle centered at zero (coordinate of incenter), such that they represent points $D,E,F$ respectively on Argand plane. By already existing formulas $$b=\frac{2xz}{x+z}, \ c=\frac{2xy}{x+y},\ m=\frac{x^2(y+z)-2xyz}{x^2-yz}.$$$$K\in BI\iff \frac{b}{k}=\overline{\left(\frac{b}{k}\right)}\iff\overline{k}=\frac{k}{xz},\ K\in EF\iff \overline{k}=\frac{y+z-k}{yz}$$Hence we get coordinates of $K$ and by swapping variables $y,z$ a formula for $l$ too $$k=\frac{x(y+z)}{x+y},\ l=\frac{x(y+z)}{x+z}.$$(A) We will prove $BK\perp CK$. This is equivalent with $$\frac{c-k}{b-k}=-\overline{\left(\frac{c-k}{b-k}\right)}.$$Indeed$$\frac{c-k}{b-k}=\frac{z-x}{x+z}=-\overline{\left(\frac{z-x}{x+z}\right)}$$because $$b-k=x\cdot\frac{(y-z)(z-x)}{(x+y)(x+z)},\ c-k=\frac{x(y-z)}{x+y}.$$(B)$$Q\in DI\iff \frac{q}{x}=\overline{\left(\frac{q}{x}\right)}\iff\overline{q}=\frac{q}{x^2},\ Q\in EF\iff \overline{q}=\frac{y+z-q}{yz}$$Therefore $$q=\frac{x^2(y+z)}{x^2+yz}$$From midpoint definition $$n=\frac{c+l}{2}=x\cdot\frac{y^2+3y(x+z)+xz}{(x+y)(x+z)}.$$The time's up for $P$. $$P\in CK\iff \frac{c-p}{c-k}=\overline{\left(\frac{c-p}{c-k}\right)}\iff \frac{2xy-p(x+y)}{x(y-z)}=\frac{2z-\overline{p}(x+y)z}{z-y}\iff \overline{p}=\frac{2x(y+z)-p(x+y)}{xz(x+y)}.$$Let's have an auxiliary calculation:$$n-m= \frac{2x(y-z)(x - y) (x^2 + 2 x z + y z) }{(x^2-yz)(x+y)(x+z)}.$$Hence$$\frac{m-p}{n-m}=\frac{x^2(y+z)-2xyz+(yz-x^2)p}{2x(y-z)(x-y)}\cdot \frac{(x+y)(x+z)}{x^2+2xz+yz},\ \overline{\left(\frac{m-p}{n-m}\right)} =\frac{(y+z-2x)xz(x+y)+(x^2-yz)\left(2x(y+z)-p(x+y)\right)}{2xz(y-z)(x-y)}\cdot \frac{y(x+z)}{x^2+2xy+yz}$$En route to equation on the right there is division by $x+y$ on nominator and denominator (just so you can have full factorization if you're still checking ). We have $$P\in MN\iff \frac{m-p}{n-m}= \overline{\left(\frac{m-p}{n-m}\right)}\iff$$It's just a linear equation in $p$. Strike a pose and let's get to it.$$p=\frac{x}{(x+y)(x^2-yz)}\cdot\frac{(x^2+2xz+yz)y(z(x+y)(y+z-2x)+2(y+z)(x^2-yz))-z(xy+xz-2yz)(x+y)(x^2+2xy+yz)}{y(x^2+2xz+yz)-z(x^2+2xy+yz)}$$$$p=\frac{x(y-z)(x^2-yz)\left(x^2(2y+z)+y^2z\right)}{(x+y)(y-z)(x^2-yz)(x^2+yz)}=\frac{x\left(x^2(2y+z)+y^2z\right)}{(x+y)(x^2+yz)}$$And the cherry on top... We will prove $PQ\parallel CI$ as it's easier and equivalent with $PQ\parallel CL$. $$\frac{p-q}{c}=\frac{xy(x-y)(x-z)}{(x+y)(x^2+yz)}\cdot \frac{x+y}{2xy}=\frac{(x-y)(x-z)}{2(x^2+yz)}$$Finally $$\frac{p-q}{c}=\frac{(x-y)(x-z)}{2(x^2+yz)}=\overline{\left(\frac{(x-y)(x-z)}{2(x^2+yz)}\right)}=\overline{\left(\frac{p-q}{c}\right)}\implies PQ\parallel CI.$$QED
16.07.2020 20:27
Yup, "very well known" seems like an understatement.
16.08.2021 22:09
Oops my solutions are basically identical to previous ones, but someone sent this to me so I'll post for storage. By the Iran Lemma, we know $\angle BKC = 90^{\circ}$. Furthermore, since $\angle BKC = \angle BLC = 90^{\circ}$, we know $DI, BL, CK$ concur at the orthocenter $H$ of $BIC$. Let $N$ be the midpoint of $CL$. Now, notice $$(C, L; N, CL \cap PQ) \overset{P}{=} (K, L; M, Q) \overset{H}{=} (C, B; M, D) = -1$$where the last equality follows from Ceva-Menelaus on the Gergonne point of $ABC$. $\blacksquare$
16.08.2021 22:13
Very nice problem.
31.08.2021 19:22
Nice way to practice projective geo
23.08.2024 21:02
Let the midpoint of $CL$ be $N$. By Iran Lemma we have $\angle BLC = \angle BKC = 90^\circ$ which implies that $BL$, $DQ$ and $CK$ concur at the orthocenter of $\triangle BIC$. Also, notice that $(B, C; D, M) = -1$ by Ceva-Menelaus. Then projecting from the orthocenter of $\triangle BIC$ we get that $(L, K; Q, M) = -1$, and projecting from $P$ onto $CL$ gives $(L, C; PQ \cap CL, N) = -1$ which implies that $PQ \parallel CL$ as desired.
20.12.2024 04:43
Let $N$ be the midpoint of $CL$. Notice that \[-1 = (BC;DM) \overset{I}{=} (KL;QM) \overset{P}{=} (CL;PQ \cap CL, N),\] which gives the desired. $\blacksquare$