In triangle $ABC$, the altitude $AH$ passes through midpoint of the median $BM$. Prove that in the triangle $BMC$ also one of the altitudes passes through the midpoint of one of the medians.
2015 Oral Moscow Geometry Olympiad
grades 8-9
The square $ABCD$ and the equilateral triangle $MKL$ are located as shown in the figure. Find the angle $\angle PQD$.
In triangle $ABC$, points $D, E$, and $F$ are marked on sides $AC, BC$, and $AB$ respectively, so that $AD = AB$, $EC = DC$, $BF = BE$. After that, they erased everything except points $E, F$ and $D$. Reconstruct the triangle $ABC$ (no study required).
In trapezoid $ABCD$, the bisectors of angles $A$ and $D$ intersect at point $E$ lying on the side of $BC$. These bisectors divide the trapezoid into three triangles into which the circles are inscribed. One of these circles touches the base $AB$ at the point $K$, and two others touch the bisector $DE$ at points $M$ and $N$. Prove that $BK = MN$.
On the $BE$ side of a regular $ABE$ triangle, a $BCDE$ rhombus is built outside it. The segments $AC$ and $BD$ intersect at point $F$. Prove that $AF <BD$.
In the acute-angled non-isosceles triangle $ABC$, the height $AH$ is drawn. Points $B_1$ and $C_1$ are marked on the sides $AC$ and $AB$, respectively, so that $HA$ is the angle bisector of $B_1HC_1$ and quadrangle $BC_1B_1C$ is cyclic. Prove that $B_1$ and $C_1$ are feet of the altitudes of triangle $ABC$.
grades 10-11
Two trapezoid angles and diagonals are respectively equal. Is it true that such are the trapezoid equal?
Line $\ell$ is perpendicular to one of the medians of the triangle. The perpendicular bisectors of the sides of this triangle intersect line $\ell$ at three points. Prove that one of them is the midpoint of the segment formed by the remaining two.
$O$ is the intersection point of the diagonals of the trapezoid $ABCD$. A line passing through $C$ and a point symmetric to $B$ with respect to $O$, intersects the base $AD$ at the point $K$. Prove that $S_{AOK} = S_{AOB} + S_{DOK}$.
In triangle $ABC$, point $M$ is the midpoint of $BC, P$ is the intersection point of the tangents at points $B$ and $C$ of the circumscribed circle, $N$ is the midpoint of the segment $MP$. The segment $AN$ intersects the circumscribed circle at point $Q$. Prove that $\angle PMQ = \angle MAQ$.
A triangle $ABC$ and spheres are given in space $S_1$ and $S_2$, each of which passes through points $A, B$ and $C$. For points $M$ spheres $S_1$ not lying in the plane of triangle $ABC$ are drawn lines $MA, MB$ and $MC$, intersecting the sphere $S_2$ for the second time at points $A_1,B_1$ and $C_1$, respectively. Prove that the planes passing through points $A_1, B_1$ and $C_1$, touch a fixed sphere or pass through a fixed point.
In an acute-angled isosceles triangle $ABC$, altitudes $CC_1$ and $BB_1$ intersect the line passing through the vertex $A$ and parallel to the line $BC$, at points $P$ and $Q$. Let $A_0$ be the midpoint of side $BC$, and $AA_1$ the altitude. Lines $A_0C_1$ and $A_0B_1$ intersect line $PQ$ at points $K$ and $L$. Prove that the circles circumscribed around triangles $PQA_1, KLA_0, A_1B_1C_1$ and a circle with a diameter $AA_1$ intersect at one point.