(a) Find all prime numbers $p$ such that $4p^2+1$ and $6p^2+1$ are also primes. (b)Find real numbers $x,y,z,u$ such that \[xyz+xy+yz+zx+x+y+z=7\]\[yzu+yz+zu+uy+y+z+u=10\]\[zux+zu+ux+xz+z+u+x=10\]\[uxy+ux+xy+yu+u+x+y=10\]
2017 NMTC Junior
If $x,y,z,p,q,r$ are real numbers such that \[\frac{1}{x+p}+\frac{1}{y+p}+\frac{1}{z+p}=\frac{1}{p}\]\[\frac{1}{x+q}+\frac{1}{y+q}+\frac{1}{z+q}=\frac{1}{q}\]\[\frac{1}{x+r}+\frac{1}{y+r}+\frac{1}{z+r}=\frac{1}{r}.\]Find the numerical value of $\frac{1}{p}+\frac{1}{q}+\frac{1}{r}$.
$ADC$ and $ABC$ are triangles such that $AD=DC$ and $AC=AB$. If $\angle CAB=20^{\circ}$ and $\angle ADC =100^{\circ}$, without using Trigonometry, prove that $AB=BC+CD$.
a) $a,b,c,d$ are positive reals such that $abcd=1$. Prove that \[\sum_{cyc} \frac{1+ab}{1+a}\geq 4.\](b)In a scalene triangle $ABC$, $\angle BAC =120^{\circ}$. The bisectors of angles $A,B,C$ meets the opposite sides in $P,Q,R$ respectively. Prove that the circle on $QR$ as diameter passes through the point $P$.
(a) Prove that $x^4+3x^3+6x^2+9x+12$ cannot be expressed as product of two polynomials of degree 2 with integers coefficients. (b) $2n+1$ segments are marked on a line. Each of these segments intersects at least $n$ other segments. Prove that one of these segments intersects all other segments.
If $a,b,c,d$ are positive reals such that $a^2+b^2=c^2+d^2$ and $a^2+d^2-ad=b^2+c^2+bc$, find the value of $\frac{ab+cd}{ad+bc}$