Problem

Source: NMTC 2017 Junior P4

Tags: inequalities, geometry



a) $a,b,c,d$ are positive reals such that $abcd=1$. Prove that \[\sum_{cyc} \frac{1+ab}{1+a}\geq 4.\](b)In a scalene triangle $ABC$, $\angle BAC =120^{\circ}$. The bisectors of angles $A,B,C$ meets the opposite sides in $P,Q,R$ respectively. Prove that the circle on $QR$ as diameter passes through the point $P$.