Let $ABC$ be a triangle and let $M$ and $N$ denote the midpoints of $\overline{AB}$ and $\overline{AC}$, respectively. Let $X$ be a point such that $\overline{AX}$ is tangent to the circumcircle of triangle $ABC$. Denote by $\omega_B$ the circle through $M$ and $B$ tangent to $\overline{MX}$, and by $\omega_C$ the circle through $N$ and $C$ tangent to $\overline{NX}$. Show that $\omega_B$ and $\omega_C$ intersect on line $BC$. Merlijn Staps
2019 USA IMO Team Selection Test
Thursday, December 6th, 2018 - TST #1
Let $\mathbb{Z}/n\mathbb{Z}$ denote the set of integers considered modulo $n$ (hence $\mathbb{Z}/n\mathbb{Z}$ has $n$ elements). Find all positive integers $n$ for which there exists a bijective function $g: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$, such that the 101 functions \[g(x), \quad g(x) + x, \quad g(x) + 2x, \quad \dots, \quad g(x) + 100x\]are all bijections on $\mathbb{Z}/n\mathbb{Z}$. Ashwin Sah and Yang Liu
A snake of length $k$ is an animal which occupies an ordered $k$-tuple $(s_1, \dots, s_k)$ of cells in a $n \times n$ grid of square unit cells. These cells must be pairwise distinct, and $s_i$ and $s_{i+1}$ must share a side for $i = 1, \dots, k-1$. If the snake is currently occupying $(s_1, \dots, s_k)$ and $s$ is an unoccupied cell sharing a side with $s_1$, the snake can move to occupy $(s, s_1, \dots, s_{k-1})$ instead. The snake has turned around if it occupied $(s_1, s_2, \dots, s_k)$ at the beginning, but after a finite number of moves occupies $(s_k, s_{k-1}, \dots, s_1)$ instead. Determine whether there exists an integer $n > 1$ such that: one can place some snake of length $0.9n^2$ in an $n \times n$ grid which can turn around. Nikolai Beluhov
Thursday, January 17th, 2019 - TST #2
We say that a function $f: \mathbb{Z}_{\ge 0} \times \mathbb{Z}_{\ge 0} \to \mathbb{Z}$ is great if for any nonnegative integers $m$ and $n$, \[f(m + 1, n + 1) f(m, n) - f(m + 1, n) f(m, n + 1) = 1.\]If $A = (a_0, a_1, \dots)$ and $B = (b_0, b_1, \dots)$ are two sequences of integers, we write $A \sim B$ if there exists a great function $f$ satisfying $f(n, 0) = a_n$ and $f(0, n) = b_n$ for every nonnegative integer $n$ (in particular, $a_0 = b_0$). Prove that if $A$, $B$, $C$, and $D$ are four sequences of integers satisfying $A \sim B$, $B \sim C$, and $C \sim D$, then $D \sim A$. Ankan Bhattacharya
Let $n$ be a positive integer. Tasty and Stacy are given a circular necklace with $3n$ sapphire beads and $3n$ turquoise beads, such that no three consecutive beads have the same color. They play a cooperative game where they alternate turns removing three consecutive beads, subject to the following conditions: Tasty must remove three consecutive beads which are turquoise, sapphire, and turquoise, in that order, on each of his turns. Stacy must remove three consecutive beads which are sapphire, turquoise, and sapphire, in that order, on each of her turns. They win if all the beads are removed in $2n$ turns. Prove that if they can win with Tasty going first, they can also win with Stacy going first. Yannick Yao
Let $ABC$ be a triangle with incenter $I$, and let $D$ be a point on line $BC$ satisfying $\angle AID=90^{\circ}$. Let the excircle of triangle $ABC$ opposite the vertex $A$ be tangent to $\overline{BC}$ at $A_1$. Define points $B_1$ on $\overline{CA}$ and $C_1$ on $\overline{AB}$ analogously, using the excircles opposite $B$ and $C$, respectively. Prove that if quadrilateral $AB_1A_1C_1$ is cyclic, then $\overline{AD}$ is tangent to the circumcircle of $\triangle DB_1C_1$. Ankan Bhattacharya