Problem

Source: USA Winter TST for IMO 2019, Problem 2, by Ashwin Sah and Yang Liu

Tags: number theory, function



Let $\mathbb{Z}/n\mathbb{Z}$ denote the set of integers considered modulo $n$ (hence $\mathbb{Z}/n\mathbb{Z}$ has $n$ elements). Find all positive integers $n$ for which there exists a bijective function $g: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$, such that the 101 functions \[g(x), \quad g(x) + x, \quad g(x) + 2x, \quad \dots, \quad g(x) + 100x\]are all bijections on $\mathbb{Z}/n\mathbb{Z}$. Ashwin Sah and Yang Liu