Find the largest positive integer with the property that each digit apart from the first and the last one is smaller than the arithmetic mean of her neighbours.
2018 Bundeswettbewerb Mathematik
Round 1
Find all real numbers $x$ satisfying the equation \[\left\lfloor \frac{20}{x+18}\right\rfloor+\left\lfloor \frac{x+18}{20}\right\rfloor=1.\]
Let $H$ be the orthocenter of the acute triangle $ABC$. Let $H_a$ be the foot of the perpendicular from $A$ to $BC$ and let the line through $H$ parallel to $BC$ intersect the circle with diameter $AH_a$ in the points $P_a$ and $Q_a$. Similarly, we define the points $P_b, Q_b$ and $P_c,Q_c$. Show that the six points $P_a,Q_a,P_b,Q_b,P_c,Q_c$ lie on a common circle.
We are given six points in space with distinct distances, no three of them collinear. Consider all triangles with vertices among these points. Show that among these triangles there is one such that its longest side is the shortest side in one of the other triangles.
Round 2
Anja and Bernd take turns in removing stones from a heap, initially consisting of $n$ stones ($n \ge 2$). Anja begins, removing at least one but not all the stones. Afterwards, in each turn the player has to remove at least one stone and at most as many stones as removed in the preceding move. The player removing the last stone wins. Depending on the value of $n$, which player can ensure a win?
Consider all functions $f:\mathbb{R} \to \mathbb{R}$ satisfying $f(1-f(x))=x$ for all $x \in \mathbb{R}$. a) By giving a concrete example, show that such a function exists. b) For each such function define the sum \[S_f=f(-2017)+f(-2016)+\dots+f(-1)+f(0)+f(1)+\dots+f(2017)+f(2018).\]Determine all possible values of $S_f$.
Let $T$ be a point on a line segment $AB$ such that $T$ is closer to $B$ than to $A$. Show that for each point $C \ne T$ on the line through $T$ perpendicular to $AB$ there is exactly one point $D$ on the line segment $AC$ with $\angle CBD=\angle BAC$. Moreover, show that the line through $D$ perpendicular to $AC$ intersects the line $AB$ in a point $E$ which is independent of the position of $C$.
Determine alle positive integers $n>1$ with the following property: For each colouring of the lattice points in the plane with $n$ colours, there are three lattice points of the same colour forming an isosceles right triangle with legs parallel to the coordinate axes.