Problem

Source: Bundeswettbewerb Mathematik 2018, Round 2, Problem 2

Tags: function, algebra, algebra proposed, functional equation, Sum



Consider all functions $f:\mathbb{R} \to \mathbb{R}$ satisfying $f(1-f(x))=x$ for all $x \in \mathbb{R}$. a) By giving a concrete example, show that such a function exists. b) For each such function define the sum \[S_f=f(-2017)+f(-2016)+\dots+f(-1)+f(0)+f(1)+\dots+f(2017)+f(2018).\]Determine all possible values of $S_f$.