2007 Turkey Team Selection Test

Day 1

1

Find the number of the connected graphs with 6 vertices. (Vertices are considered to be different)

2

Two different points $A$ and $B$ and a circle $\omega$ that passes through $A$ and $B$ are given. $P$ is a variable point on $\omega$ (different from $A$ and $B$). $M$ is a point such that $MP$ is the bisector of the angle $\angle{APB}$ ($M$ lies outside of $\omega$) and $MP=AP+BP$. Find the geometrical locus of $M$.

3

Let $a, b, c$ be positive reals such that their sum is $1$. Prove that \[\frac{1}{ab+2c^{2}+2c}+\frac{1}{bc+2a^{2}+2a}+\frac{1}{ac+2b^{2}+2b}\geq \frac{1}{ab+bc+ac}.\]

Day 2

1

Let $ABC$ is an acute angled triangle and let $A_{1},\, B_{1},\, C_{1}$ are points respectively on $BC,\,CA,\,AB$ such that $\triangle ABC$ is similar to $\triangle A_{1}B_{1}C_{1}.$ Prove that orthocenter of $A_{1}B_{1}C_{1}$ coincides with circumcenter of $ABC$.

2

A number $n$ is satisfying the conditions below i) $n$ is a positive odd integer; ii) there are some odd integers such that their squares' sum is equal to $n^{4}$. Find all such numbers.

3

We write $1$ or $-1$ on each unit square of a $2007 \times 2007$ board. Find the number of writings such that for every square on the board the absolute value of the sum of numbers on the square is less then or equal to $1$.