Problem

Source: Turkey TST 2007

Tags: geometry, circumcircle, analytic geometry, trigonometry, geometry proposed



Let $ABC$ is an acute angled triangle and let $A_{1},\, B_{1},\, C_{1}$ are points respectively on $BC,\,CA,\,AB$ such that $\triangle ABC$ is similar to $\triangle A_{1}B_{1}C_{1}.$ Prove that orthocenter of $A_{1}B_{1}C_{1}$ coincides with circumcenter of $ABC$.