2005 Turkey MO (2nd round)

1

For all positive real numbers $a,b,c,d$ prove the inequality \[\sqrt{a^4+c^4}+\sqrt{a^4+d^4}+\sqrt{b^4+c^4}+\sqrt{b^4+d^4} \ge 2\sqrt{2}(ad+bc)\]

2

In a triangle $ABC$ with $AB<AC<BC$, the perpendicular bisectors of $AC$ and $BC$ intersect $BC$ and $AC$ at $K$ and $L$, respectively. Let $O$, $O_1$, and $O_2$ be the circumcentres of triangles $ABC$, $CKL$, and $OAB$, respectively. Prove that $OCO_1O_2$ is a parallelogram.

3

Some of the $n + 1$ cities in a country (including the capital city) are connected by one-way or two-way airlines. No two cities are connected by both a one-way airline and a two-way airline, but there may be more than one two-way airline between two cities. If $d_A$ denotes the number of airlines from a city $A$, then $d_A \le n$ for any city $A$ other than the capital city and $d_A + d_B \le n$ for any two cities $A$ and $B$ other than the capital city which are not connected by a two-way airline. Every airline has a return, possibly consisting of several connected flights. Find the largest possible number of two-way airlines and all configurations of airlines for which this largest number is attained.

4

Find all triples of nonnegative integers $(m,n,k)$ satisfying $5^m+7^n=k^3$.

5

If $a,b,c$ are the sides of a triangle and $r$ the inradius of the triangle, prove that \[\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\le \frac{1}{4r^2} \]

6

Suppose that a sequence $(a_n)_{n=1}^{\infty}$ of integers has the following property: For all $n$ large enough (i.e. $n \ge N$ for some $N$ ), $a_n$ equals the number of indices $i$, $1 \le i < n$, such that $a_i + i \ge n$. Find the maximum possible number of integers which occur infinitely many times in the sequence.