Problem

Source:

Tags: number theory unsolved, number theory



Suppose that a sequence $(a_n)_{n=1}^{\infty}$ of integers has the following property: For all $n$ large enough (i.e. $n \ge N$ for some $N$ ), $a_n$ equals the number of indices $i$, $1 \le i < n$, such that $a_i + i \ge n$. Find the maximum possible number of integers which occur infinitely many times in the sequence.