In a triangle $\triangle ABC$ with$\angle B>\angle C$, the altitude, the angle bisector, and the median from $A$ intersect $BC$ at $H, L$ and $D$, respectively. Show that $\angle HAL=\angle DAL$ if and only if $\angle BAC=90^{\circ}$.
2004 Turkey MO (2nd round)
Two-way flights are operated between $80$ cities in such a way that each city is connected to at least $7$ other cities by a direct flight and any two cities are connected by a finite sequence of flights. Find the smallest $k$ such that for any such arrangement of flights it is possible to travel from any city to any other city by a sequence of at most $k$ flights.
(a) Determine if exist an integer $n$ such that $n^2 -k$ has exactly $10$ positive divisors for each $k = 1, 2, 3.$ (b) Show that the number of positive divisors of $n^2 -4$ is not $10$ for any integer $n.$
Find all functions $f:\mathbb{Z}\to \mathbb{Z}$ satisfying the condition $f(n)-f(n+f(m))=m$ for all $m,n\in \mathbb{Z}$
The excircle of a triangle $ABC$ corresponding to $A$ touches the lines $BC,CA,AB$ at $A_1,B_1,C_1$, respectively. The excircle corresponding to $B$ touches $BC,CA,AB$ at $A_2,B_2,C_2$, and the excircle corresponding to $C$ touches $BC,CA,AB$ at $A_3,B_3,C_3$, respectively. Find the maximum possible value of the ratio of the sum of the perimeters of $\triangle A_1B_1C_1$, $\triangle A_2B_2C_2$ and $\triangle A_3B_3C_3$ to the circumradius of $\triangle ABC$.
Define $K(n,0)=\varnothing $ and, for all nonnegative integers m and n, $K(n,m+1)=\left\{ \left. k \right|\text{ }1\le k\le n\text{ and }K(k,m)\cap K(n-k,m)=\varnothing \right\}$. Find the number of elements of $K(2004,2004)$.