Problem

Source:

Tags: inequalities, ratio, geometry, perimeter, circumcircle, trigonometry, geometry proposed



The excircle of a triangle $ABC$ corresponding to $A$ touches the lines $BC,CA,AB$ at $A_1,B_1,C_1$, respectively. The excircle corresponding to $B$ touches $BC,CA,AB$ at $A_2,B_2,C_2$, and the excircle corresponding to $C$ touches $BC,CA,AB$ at $A_3,B_3,C_3$, respectively. Find the maximum possible value of the ratio of the sum of the perimeters of $\triangle A_1B_1C_1$, $\triangle A_2B_2C_2$ and $\triangle A_3B_3C_3$ to the circumradius of $\triangle ABC$.