1998 Turkey MO (2nd round)

Day 1

1

Let $D$ be the point on the base $BC$ of an isosceles $\vartriangle ABC$ triangle such that $\frac{\left| BD \right|}{\left| DC \right|}=\text{ }2$, and let $P$ be the point on the segment $\left[ AD \right]$ such that $\angle BAC=\angle BPD$. Prove that $\angle DPC=\frac{1}{2}\angle BAC$.

2

If $0\le a\le b\le c$ real numbers, prove that $(a+3b)(b+4c)(c+2a)\ge 60abc$.

3

The points of a circle are colored by three colors. Prove that there exist infinitely many isosceles triangles inscribed in the circle whose vertices are of the same color.

Day 2

1

Find all positive integers $x$ and $n$ such that ${{x}^{3}}+3367={{2}^{n}}$.

2

Variable points $M$ and $N$ are considered on the arms $\left[ OX \right.$ and $\left[ OY \right.$ , respectively, of an angle $XOY$ so that $\left| OM \right|+\left| ON \right|$ is constant. Determine the locus of the midpoint of $\left[ MN \right]$.

3

Some of the vertices of unit squares of an $n\times n$ chessboard are colored so that any $k\times k$ ( $1\le k\le n$) square consisting of these unit squares has a colored point on at least one of its sides. Let $l(n)$ denote the minimum number of colored points required to satisfy this condition. Prove that $\underset{n\to \infty }{\mathop \lim }\,\frac{l(n)}{{{n}^{2}}}=\frac{2}{7}$.