Problem

Source: Turkish NMO 1998, 6. Problem

Tags: limit, combinatorics proposed, combinatorics



Some of the vertices of unit squares of an $n\times n$ chessboard are colored so that any $k\times k$ ( $1\le k\le n$) square consisting of these unit squares has a colored point on at least one of its sides. Let $l(n)$ denote the minimum number of colored points required to satisfy this condition. Prove that $\underset{n\to \infty }{\mathop \lim }\,\frac{l(n)}{{{n}^{2}}}=\frac{2}{7}$.