Suppose that $a,b,c$ are real numbers in $(0,\frac{\pi}{2})$ such that $a+b+c=\frac{\pi}{4}$ and $\tan{a}=\frac{1}{x},\tan{b}=\frac{1}{y},\tan{c}=\frac{1}{z}$ , where $x,y,z$ are positive integer numbers. Find $x,y,z$.
1996 Taiwan National Olympiad
Day 1
Let $0<a\leq 1$ be a real number and let $a\leq a_{i}\leq\frac{1}{a_{i}}\forall i=\overline{1,1996}$ are real numbers. Prove that for any nonnegative real numbers $k_{i}(i=1,2,...,1996)$ such that $\sum_{i=1}^{1996}k_{i}=1$ we have $(\sum_{i=1}^{1996}k_{i}a_{i})(\sum_{i=1}^{1996}\frac{k_{i}}{a_{i}})\leq (a+\frac{1}{a})^{2}$.
Let be given points $A,B$ on a circle and let $P$ be a variable point on that circle. Let point $M$ be determined by $P$ as the point that is either on segment $PA$ with $AM=MP+PB$ or on segment $PB$ with $AP+MP=PB$. Find the locus of points $M$.
Day 2
Show that for any real numbers $a_{3},a_{4},...,a_{85}$, not all the roots of the equation $a_{85}x^{85}+a_{84}x^{84}+...+a_{3}x^{3}+3x^{2}+2x+1=0$ are real.
Dertemine integers $a_{1},a_{2},...,a_{99}=a_{0}$ satisfying $|a_{k}-a_{k-1}|\geq 1996$ for all $k=1,2,...,99$, such that $m=\max_{1\leq k\leq 99} |a_{k}-a_{k-1}|$ is minimum possible, and find the minimum value $m^{*}$ of $m$.
Let $q_{0},q_{1},...$ be a sequence of integers such that a) for any $m>n$ we have $m-n\mid q_{m}-q_{n}$, and b) $|q_{n}|\leq n^{10}, \ \forall n\geq 0$. Prove there exists a polynomial $Q$ such that $q_{n}=Q(n), \ \forall n\geq 0$.