Suppose that $a,b,c$ are real numbers in $(0,\frac{\pi}{2})$ such that $a+b+c=\frac{\pi}{4}$ and $\tan{a}=\frac{1}{x},\tan{b}=\frac{1}{y},\tan{c}=\frac{1}{z}$ , where $x,y,z$ are positive integer numbers. Find $x,y,z$.
Problem
Source: 5-th Taiwanese Mathematical Olympiad 1996
Tags: trigonometry, number theory proposed, number theory