1992 Taiwan National Olympiad

Day 1

1

Let $A,B$ be two points on a give circle, and $M$ be the midpoint of one of the arcs $AB$ . Point $C$ is the orthogonal projection of $B$ onto the tangent $l$ to the circle at $A$. The tangent at $M$ to the circle meets $AC,BC$ at $A',B'$ respectively. Prove that if $\hat{BAC}<\frac{\pi}{8}$ then $S_{ABC}<2S_{A'B'C'}$.

2

Every positive integer can be represented as a sum of one or more consecutive positive integers. For each $n$ , find the number of such represententation of $n$.

3

If $x_{1},x_{2},...,x_{n}(n>2)$ are positive real numbers with $x_{1}+x_{2}+...+x_{n}=1$. Prove that $x_{1}^{2}x_{2}+x_{2}^{2}x_{3}+...+x_{n}^{2}x_{1}\leq\frac{4}{27}$.

Day 2

4

For a positive integer number $r$, the sequence $a_{1},a_{2},...$ defined by $a_{1}=1$ and $a_{n+1}=\frac{na_{n}+2(n+1)^{2r}}{n+2}\forall n\geq 1$. Prove that each $a_{n}$ is positive integer number, and find $n's$ for which $a_{n}$ is even.

5

A line through the incenter $I$ of triangle $ABC$, perpendicular to $AI$, intersects $AB$ at $P$ and $AC$ at $Q$. Prove that the circle tangent to $AB$ at $P$ and to $AC$ at $Q$ is also tangent to the circumcircle of triangle $ABC$.

6

Find the greatest positive integer $A$ with the following property: For every permutation of $\{1001,1002,...,2000\}$ , the sum of some ten consecutive terms is great than or equal to $A$.