Problem

Source: 1-st Taiwanese Mathematical Olympiad 1992

Tags: trigonometry, quadratics, geometry unsolved, geometry



Let $A,B$ be two points on a give circle, and $M$ be the midpoint of one of the arcs $AB$ . Point $C$ is the orthogonal projection of $B$ onto the tangent $l$ to the circle at $A$. The tangent at $M$ to the circle meets $AC,BC$ at $A',B'$ respectively. Prove that if $\hat{BAC}<\frac{\pi}{8}$ then $S_{ABC}<2S_{A'B'C'}$.