In acute triangle $ABC$, $\angle{A}<\angle{B}$ and $\angle{A}<\angle{C}$. Let $P$ be a variable point on side $BC$. Points $D$ and $E$ lie on sides $AB$ and $AC$, respectively, such that $BP=PD$ and $CP=PE$. Prove that as $P$ moves along side $BC$, the circumcircle of triangle $ADE$ passes through a fixed point other than $A$.
2012 USA Team Selection Test
December TST
Determine all functions $f:\mathbb{R}\to\mathbb{R}$ such that for every pair of real numbers $x$ and $y$, \[f(x+y^2)=f(x)+|yf(y)|.\]
Determine, with proof, whether or not there exist integers $a,b,c>2010$ satisfying the equation \[a^3+2b^3+4c^3=6abc+1.\]
There are 2010 students and 100 classrooms in the Olympiad High School. At the beginning, each of the students is in one of the classrooms. Each minute, as long as not everyone is in the same classroom, somebody walks from one classroom into a different classroom with at least as many students in it (prior to his move). This process will terminate in $M$ minutes. Determine the maximum value of $M$.
January TST
Consider (3-variable) polynomials \[P_n(x,y,z)=(x-y)^{2n}(y-z)^{2n}+(y-z)^{2n}(z-x)^{2n}+(z-x)^{2n}(x-y)^{2n}\] and \[Q_n(x,y,z)=[(x-y)^{2n}+(y-z)^{2n}+(z-x)^{2n}]^{2n}.\] Determine all positive integers $n$ such that the quotient $Q_n(x,y,z)/P_n(x,y,z)$ is a (3-variable) polynomial with rational coefficients.
In cyclic quadrilateral $ABCD$, diagonals $AC$ and $BD$ intersect at $P$. Let $E$ and $F$ be the respective feet of the perpendiculars from $P$ to lines $AB$ and $CD$. Segments $BF$ and $CE$ meet at $Q$. Prove that lines $PQ$ and $EF$ are perpendicular to each other.
Determine all positive integers $n$, $n\ge2$, such that the following statement is true: If $(a_1,a_2,...,a_n)$ is a sequence of positive integers with $a_1+a_2+\cdots+a_n=2n-1$, then there is block of (at least two) consecutive terms in the sequence with their (arithmetic) mean being an integer.
Find all positive integers $a,n\ge1$ such that for all primes $p$ dividing $a^n-1$, there exists a positive integer $m<n$ such that $p\mid a^m-1$.
These problems are copyright $\copyright$ Mathematical Association of America.