Problem

Source: USA January TST for IMO 2012, Problem 3

Tags: induction, arithmetic sequence, strong induction, combinatorics



Determine all positive integers $n$, $n\ge2$, such that the following statement is true: If $(a_1,a_2,...,a_n)$ is a sequence of positive integers with $a_1+a_2+\cdots+a_n=2n-1$, then there is block of (at least two) consecutive terms in the sequence with their (arithmetic) mean being an integer.