1997 Bulgaria National Olympiad

Day 1

1

Consider the polynomial $P_n(x) = \binom {n}{2}+\binom {n}{5}x+\binom {n}{8}x^2 + \cdots + \binom {n}{3k+2}x^{3k}$ where $n \ge 2$ is a natural number and $k = \left\lfloor \frac{n-2}{3} \right \rfloor$ (a) Prove that $P_{n+3}(x)=3P_{n+2}(x)-3P_{n+1}(x)+(x+1)P_n(x)$ (b) Find all integer numbers $a$ such that $P_n(a^3)$ is divisible by $3^{ \lfloor \frac{n-1}{2} \rfloor}$ for all $n \ge 2$

2

Let $M$ be the centroid of $\Delta ABC$ Prove the inequality $\sin \angle CAM + \sin\angle CBM \le \frac{2}{\sqrt 3}$ (a) if the circumscribed circle of $\Delta AMC$ is tangent to the line $AB$ (b) for any $\Delta ABC$

3

Let $n$ and $m$ be natural numbers such that $m+ i=a_ib_i^2$ for $i=1,2, \cdots n$ where $a_i$ and $b_i$ are natural numbers and $a_i$ is not divisible by a square of a prime number. Find all $n$ for which there exists an $m$ such that $\sum_{i=1}^{n}a_i=12$

Day 2

1

Let $ a$, $ b$, $ c$ be positive real numbers such that $ abc=1$. Prove that $ \frac{1}{1+b+c}+\frac{1}{1+c+a}+\frac{1}{1+a+b}\leq\frac{1}{2+a}+\frac{1}{2+b}+\frac{1}{2+c}$.

2

Given a triangle $ABC$. Let $M$ and $N$ be the points where the angle bisectors of the angles $ABC$ and $BCA$ intersect the sides $CA$ and $AB$, respectively. Let $D$ be the point where the ray $MN$ intersects the circumcircle of triangle $ABC$. Prove that $\frac{1}{BD}=\frac{1}{AD}+\frac{1}{CD}$.

3

Let $X$ be a set of $n + 1$ elements, $n\geq 2$. Ordered $n$-tuples $(a_1,\ldots,a_n)$ and $(b_1,\ldots,b_n)$ formed from distinct elements of $X$ are called disjoint if there exist distinct indices $1\leq i \neq j\leq n$ such that $a_i = b_j$. Find the maximal number of pairwise disjoint $n$-tuples.