Problem

Source: Bulgaria 1997; Old and New Inequalities (both times the proposed solution is brute force)

Tags: inequalities, function, inequalities unsolved



Let $ a$, $ b$, $ c$ be positive real numbers such that $ abc=1$. Prove that $ \frac{1}{1+b+c}+\frac{1}{1+c+a}+\frac{1}{1+a+b}\leq\frac{1}{2+a}+\frac{1}{2+b}+\frac{1}{2+c}$.