Points $B,C$ vary on two fixed rays emanating from point $A$ such that $AB+AC$ is constant. Show that there is a point $D$, other than $A$, such that the circumcircle of triangle $ABC$ passes through $D$ for all possible choices of $B, C$.
2006 Nordic
1
2
Real numbers $x,y,z$ are not all equal and satisfy $x+\frac{1}{y} = y + \frac{1}{z} = z + \frac{1}{x}=k$. Find all possible values of $k$.
3
A sequence $(a_n)$ of positive integers is defined by $a_0=m$ and $a_{n+1}= a_n^5 +487$ for all $n\ge 0$. Find all positive integers $m$ such that the sequence contains the maximum possible number of perfect squares.
4
Each square of a $100\times 100$ board is painted with one of $100$ different colours, so that each colour is used exactly $100$ times. Show that there exists a row or column of the chessboard in which at least $10$ colours are used.