Each square of a $100\times 100$ board is painted with one of $100$ different colours, so that each colour is used exactly $100$ times. Show that there exists a row or column of the chessboard in which at least $10$ colours are used.
Source:
Tags: combinatorics
Each square of a $100\times 100$ board is painted with one of $100$ different colours, so that each colour is used exactly $100$ times. Show that there exists a row or column of the chessboard in which at least $10$ colours are used.