2012 Turkey Junior National Olympiad

1

Let $x, y$ be integers and $p$ be a prime for which \[ x^2-3xy+p^2y^2=12p \] Find all triples $(x,y,p)$.

2

In a convex quadrilateral $ABCD$, the diagonals are perpendicular to each other and they intersect at $E$. Let $P$ be a point on the side $AD$ which is different from $A$ such that $PE=EC.$ The circumcircle of triangle $BCD$ intersects the side $AD$ at $Q$ where $Q$ is also different from $A$. The circle, passing through $A$ and tangent to line $EP$ at $P$, intersects the line segment $AC$ at $R$. If the points $B, R, Q$ are concurrent then show that $\angle BCD=90^{\circ}$.

3

Let $a, b, c$ be positive real numbers satisfying $a^3+b^3+c^3=a^4+b^4+c^4$. Show that \[ \frac{a}{a^2+b^3+c^3}+\frac{b}{a^3+b^2+c^3}+\frac{c}{a^3+b^3+c^2} \geq 1 \]

4

We want to place $2012$ pockets, including variously colored balls, into $k$ boxes such that i) For any box, all pockets in this box must include a ball with the same color or ii) For any box, all pockets in this box must include a ball having a color which is not included in any other pocket in this box Find the smallest value of $k$ for which we can always do this placement whatever the number of balls in the pockets and whatever the colors of balls.