Problem

Source: Turkey Junior National Olympiad 2012 P3

Tags: inequalities, inequalities proposed



Let $a, b, c$ be positive real numbers satisfying $a^3+b^3+c^3=a^4+b^4+c^4$. Show that \[ \frac{a}{a^2+b^3+c^3}+\frac{b}{a^3+b^2+c^3}+\frac{c}{a^3+b^3+c^2} \geq 1 \]