2014 Benelux

May 3rd

1

Find the smallest possible value of the expression \[\left\lfloor\frac{a+b+c}{d}\right\rfloor+\left\lfloor\frac{b+c+d}{a}\right\rfloor+\left\lfloor\frac{c+d+a}{b}\right\rfloor+\left\lfloor\frac{d+a+b}{c}\right\rfloor\] in which $a,~ b,~ c$, and $d$ vary over the set of positive integers. (Here $\lfloor x\rfloor$ denotes the biggest integer which is smaller than or equal to $x$.)

2

Let $k\ge 1$ be a positive integer. We consider $4k$ chips, $2k$ of which are red and $2k$ of which are blue. A sequence of those $4k$ chips can be transformed into another sequence by a so-called move, consisting of interchanging a number (possibly one) of consecutive red chips with an equal number of consecutive blue chips. For example, we can move from $r\underline{bb}br\underline{rr}b$ to $r\underline{rr}br\underline{bb}b$ where $r$ denotes a red chip and $b$ denotes a blue chip. Determine the smallest number $n$ (as a function of $k$) such that starting from any initial sequence of the $4k$ chips, we need at most $n$ moves to reach the state in which the first $2k$ chips are red.

3

For all integers $n\ge 2$ with the following property: for each pair of positive divisors $k,~\ell <n$, at least one of the numbers $2k-\ell$ and $2\ell-k$ is a (not necessarily positive) divisor of $n$ as well.

4

Let $ABCD$ be a square. Consider a variable point $P$ inside the square for which $\angle BAP \ge 60^\circ.$ Let $Q$ be the intersection of the line $AD$ and the perpendicular to $BP$ in $P$. Let $R$ be the intersection of the line $BQ$ and the perpendicular to $BP$ from $C$. (a) Prove that $|BP|\ge |BR|$ (b) For which point(s) $P$ does the inequality in (a) become an equality?