Problem

Source: Benelux MO 2014 Problem 1

Tags: function, floor function, algebra unsolved, algebra



Find the smallest possible value of the expression \[\left\lfloor\frac{a+b+c}{d}\right\rfloor+\left\lfloor\frac{b+c+d}{a}\right\rfloor+\left\lfloor\frac{c+d+a}{b}\right\rfloor+\left\lfloor\frac{d+a+b}{c}\right\rfloor\] in which $a,~ b,~ c$, and $d$ vary over the set of positive integers. (Here $\lfloor x\rfloor$ denotes the biggest integer which is smaller than or equal to $x$.)