2024 Azerbaijan JBMO TST

1

Let $A$ be a subset of $\{2,3, \ldots, 28 \}$ such that if $a \in A$, then the residue obtained when we divide $a^2$ by $29$ also belongs to $A$. Find the minimum possible value of $|A|$.

2

Let $ABC$ be a triangle with $AB<AC$ and $\omega$ be its circumcircle. The tangent line to $\omega$ at $A$ intersects line $BC$ at $D$ and let $E$ be a point on $\omega$ such that $BE$ is parallel to $AD$. $DE$ intersects segment $AB$ and $\omega$ at $F$ and $G$, respectively. The circumcircle of $BGF$ intersects $BE$ at $N$. The line $NF$ intersects lines $AD$ and $EA$ at $S$ and $T$, respectively. Prove that $DGST$ is cyclic.

3

There are $n$ blocks placed on the unit squares of a $n \times n$ chessboard such that there is exactly one block in each row and each column. Find the maximum value $k$, in terms of $n$, such that however the blocks are arranged, we can place $k$ rooks on the board without any two of them threatening each other. (Two rooks are not threatening each other if there is a block lying between them.)

4

Let $a \geq b \geq 1 \geq c \geq 0$ be real numbers such that $a+b+c=3$. Show that $$3 \left( \frac{a}{b}+\frac{b}{a} \right ) \geq 4c^2+\frac{a^2}{b}+\frac{b^2}{a}$$