Problem

Source: JBMO Shortlist 2023, A5

Tags: inequalities, JBMO, JBMO Shortlist, algebra, AZE JBMO TST



Let $a \geq b \geq 1 \geq c \geq 0$ be real numbers such that $a+b+c=3$. Show that $$3 \left( \frac{a}{b}+\frac{b}{a} \right ) \geq 4c^2+\frac{a^2}{b}+\frac{b^2}{a}$$